Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 13 van 16 gevonden artikelen
 
 
  Maintaining the performance of a learned classifier under concept drift
 
 
Titel: Maintaining the performance of a learned classifier under concept drift
Auteur: Black, Michaela
Hickey, Ray J.
Verschenen in: Intelligent data analysis
Paginering: Jaargang 3 (2013) nr. 6 pagina's 453-474
Jaar: 2013-06-14
Inhoud: On-line learning systems which use incoming batches of training examples to induce rules for a classification task, such as credit card fraud detection, may have to deal with concept drift whereby some of the underlying class definitions change over time. Identifying drift against a background of noise and maintaining accuracy of the learned rules are challenging tasks. We propose a methodology for handling these problems based on the assessment of relevance of a time-stamp attribute (TSAR). In place of the time-windowing of examples that tends to be used in current approaches, we employ a new purging mechanism to remove examples that are no longer valid but retain valid examples regardless of age. This allows the example base to grow thus facilitating good classification. We describe one particular TSAR algorithm, CD3, which utilises ID3 with post pruning. We report on trials that show CD3 can cope very well in a variety of batch-drift scenarios.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 13 van 16 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland