Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 26 gevonden artikelen
 
 
  A co-training algorithm based on modified Fisher's linear discriminant analysis
 
 
Titel: A co-training algorithm based on modified Fisher's linear discriminant analysis
Auteur: Tan, Xue-Min
Chen, Min-You
Gan, John Q.
Verschenen in: Intelligent data analysis
Paginering: Jaargang 19 (2015) nr. 2 pagina's 279-292
Jaar: 2015-04-16
Inhoud: In this paper, a new co-training algorithm based on modified Fisher's Linear Discriminant Analysis (FLDA) is proposed for semi-supervised learning, which only needs a small set of labeled samples to train classifiers and is thus very useful in applications like brain-computer interface (BCI) design. Two classifiers, one aiming to maximize the normalized between-class diversity and the other to minimize the normalized within-class diversity, are proposed for the co-training process. A method with a confidence criterion is also proposed for selecting unlabeled data to expand training data set. The co-training algorithm is compared with a static FLDA method and a FLDA based on self-training algorithm on the data set 2a for BCI Competition IV, with statistical significance test. Experimental results show that the new co-training algorithm outperformed the other two methods and its average classification accuracy was improved iteration by iteration, demonstrating the convergence of the co-training process.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 26 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland