Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 14 gevonden artikelen
 
 
  Discovering high utility itemsets with multiple minimum supports
 
 
Titel: Discovering high utility itemsets with multiple minimum supports
Auteur: Ryang, Heungmo
Yun, Unil
Ryu, Keun Ho
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 6 pagina's 1027-1047
Jaar: 2014-11-18
Inhoud: Generally, association rule mining uses only a single minimum support threshold for the whole database. This model implicitly assumes that all items in the database have the same nature. In real applications, however, each item can have different nature such as medical datasets which contain information of both diseases and symptoms or status related to the diseases. Therefore, association rule mining needs to consider multiple minimum supports. Association rule mining with multiple minimum supports discovers all item rules by reflecting their characteristics. Although this model can identify meaningful association rules including rare item rules, not only the importance of items such as fatality rate of diseases but also attribute of items such as duration of symptoms are not considered since it treats each item with equal importance and represents the occurrences of items in transactions as binary values. In this paper, we propose a novel tree structure, called MHU-Tree (Multiple item supports with High Utility Tree), which is constructed with a single scan. Moreover, we propose an algorithm, named MHU-Growth (Multiple item supports with High Utility Growth), for mining high utility itemsets with multiple minimum supports. Experimental results show that MHU-Growth outperforms the previous algorithm on both real and synthetic datasets, and can discover useful rules from a medical dataset.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 14 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland