Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 13 van 14 gevonden artikelen
 
 
  Q^{*}-based state abstraction and knowledge discovery in reinforcement learning
 
 
Titel: Q^{*}-based state abstraction and knowledge discovery in reinforcement learning
Auteur: Taherian, Nahid
Shiri, Mohammad Ebrahim
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 6 pagina's 1153-1175
Jaar: 2014-11-18
Inhoud: State abstraction and value function approximation are powerful and useful methods for time and memory management in reinforcement learning. In traditional trends, these methods are applied to speed up learning of the current task; however, when we learn multiple similar environments in a general setting, these methods can be applied to improve learning of other tasks. We propose a framework to aggregate the results of state abstraction and function approximation in several tasks of a domain to reuse them in future tasks of that domain. First, we show theoretically how abstraction based on optimal value functions speeds up learning in that same task in the future. In many situations, fuzzy clustering is more natural than hard clustering, since it does not force the states to fully belong to one of the classes. In second part, we examine theoretically and algorithmically how using the knowledge extracted by fuzzy value approximation of a single task improves learning of that same task in the future. In both parts, we show that aggregating states (hard or fuzzy) preserves the optimal value function in the abstract space with an error bound. Having the support provided by these two parts, we propose new ways to combine the results of abstraction and approximation of different tasks of the domain to infer similarity measures on the state space. Finally, we show empirically that batch learning based on these similarity measures can speed up learning in the future tasks of the setting.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 13 van 14 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland