Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 10 van 14 gevonden artikelen
 
 
  Hybrid probabilistic sampling with random subspace for imbalanced data learning
 
 
Titel: Hybrid probabilistic sampling with random subspace for imbalanced data learning
Auteur: Cao, Peng
Zhao, Dazhe
Zaiane, Osmar
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 6 pagina's 1089-1108
Jaar: 2014-11-18
Inhoud: Class imbalance is one of the challenging problems for machine learning in many real-world applications. Other issues, such as within-class imbalance and high dimensionality, can exacerbate the problem. We propose a method HPS-DRS that combines two ideas: Hybrid Probabilistic Sampling technique ensemble with Diverse Random Subspace to address these issues. HPS improves the performance of traditional re-sampling algorithms with the aid of probability function, since it is not sufficient to simply manipulate the class sizes for imbalanced data with complex distribution. Moreover, DRS ensemble employs the minimum overlapping mechanism to provide diversity and weighted voting, so as to improve the generalization performance. The experimental results demonstrate that our method is efficient for learning from imbalanced data and can achieve better results than state-of-the-art methods for imbalanced data.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 10 van 14 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland