Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 13 gevonden artikelen
 
 
  A tag-based recommender system using rule-based collaborative profile enrichment
 
 
Titel: A tag-based recommender system using rule-based collaborative profile enrichment
Auteur: Movahedian, Hamed
Khayyambashi, Mohammad Reza
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 5 pagina's 953-972
Jaar: 2014-09-23
Inhoud: With the rapid increasing rate of the high volume of social web contents due to the growing popularity of social media services, significant attention has been drawn towards recommender systems i.e. systems, that offer recommendations to users on items appropriate to their requirements. To offer suitable recommendations, the systems need comprehensive user and item models that would be able to provide thorough understanding of their characteristics and preferences. In this article, a new recommender system is proposed based on the similarities between user and item profiles. The approach here is to generate user and item profiles by discovering frequent user-generated tag patterns, and to enrich each individual profile by a two-phase profile enrichment procedure. The profiles are extended by association rules discovered through the association rule mining process. The user/item profiles are further enriched through collaboration with other similar user/item profiles. To evaluate the performance of this proposed approach, a real dataset from The Del.icio.us website is used for empirical experiment. Experimental result s demonstrate that the proposed approach provides a better representation of user interests and achieves better recommendation results in terms of precision and ranking accuracy as compared to existing methods.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 13 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland