Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 12 van 13 gevonden artikelen
 
 
  Using genetic algorithms for attribute grouping in multivariate microaggregation
 
 
Titel: Using genetic algorithms for attribute grouping in multivariate microaggregation
Auteur: Balasch-Masoliver, Jordi
Muntés-Mulero, Victor
Nin, Jordi
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 5 pagina's 819-836
Jaar: 2014-09-23
Inhoud: Anonymization techniques that provide k-anonymity suffer from loss of quality when data dimensionality is high. Microaggregation techniques are not an exception. Given a set of records, attributes are grouped into non-intersecting subsets and microaggregated independently. While this improves quality by reducing the loss of information, it usually leads to the loss of the k-anonymity property, increasing entity disclosure risk. In spite of this, grouping attributes is still a common practice for data sets containing a large number of records. Depending on the attributes chosen and their correlation, the amount of information loss and disclosure risk vary. However, there have not been serious attempts to propose a way to find the best way of grouping attributes. In this paper, we present GOMM, the Genetic Optimizer for Multivariate Microaggregation which, as far as we know, represents the first proposal using evolutionary algorithms for this problem. The goal of GOMM is finding the optimal, or near-optimal, attribute grouping taking into account both information loss and disclosure risk. We propose a way to map attribute subsets into a chromosome and a set of new mutation operations for this context. Also, we provide a comprehensive analysis of the operations proposed and we show that, after using our evolutionary approach for different real data sets, we obtain better quality in the anonymized data comparing it to previously used ad-hoc attribute grouping techniques. Additionally, we provide an improved version of GOMM called D-GOMM where operations are dynamically executed during the optimization process to reduce the GOMM execution time.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 12 van 13 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland