Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 11 van 12 gevonden artikelen
 
 
  Predicting the number of nearest neighbors for the k-NN classification algorithm
 
 
Titel: Predicting the number of nearest neighbors for the k-NN classification algorithm
Auteur: Zhang, Xueying
Song, Qinbao
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 3 pagina's 449-464
Jaar: 2014-05-14
Inhoud: k-Nearest Neighbor (k-NN) is one of the most widely used classification algorithms. When classifying a new instance, k-NN first finds out its k nearest neighbors, and then classifies it by voting for the categories of the k nearest neighbors. Therefore, an appropriate number of nearest neighbors is critical for the k-NN classifier. However, in present, there is no systematical solution to determine the specific value of k. In order to address this problem, we propose a novel method of using back-propagation neural networks to explore the relationship between data set characteristics and the optimal values of k, then the relationship and the data set characteristics of a new data set are used to recommend the value of k for this data set. The experimental results on the 49 UCI benchmark data sets show that compared with the optimal k values, although there is a decrease of 1.61% in the average classification accuracy for the k-NN classifier with the recommended k values, the time for determining the k values is greatly shortened.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 11 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland