Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 8 van 10 gevonden artikelen
 
 
  Incorporating frequency, recency and profit in sequential pattern based recommender systems
 
 
Titel: Incorporating frequency, recency and profit in sequential pattern based recommender systems
Auteur: Huang, Cheng-Lung
Chen, Mu-Chen
Huang, Wen-Chen
Huang, Sheng-Huang
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 5 pagina's 899-916
Jaar: 2013-09-27
Inhoud: Customers usually change their purchase interests in the short product life cycle of the e-commerce environment. Therefore, recent transaction patterns should have a greater effect on the customer preferences. From the seller's point of view, an e-commerce recommender system should focus on the profit of recommendation. This study proposes a new sequential pattern mining algorithm that incorporates the concepts of frequency, recency, and profit to discover frequent, recent, and profitable sequential patterns, called FRP-sequences. Based on the discovered sequential patterns, this study develops a collaborative recommender system to improve recommendation accuracy for customers and the profit of recommendation from the seller's perspective. The proposed recommender system clusters customers, discovers FRP-sequences for each cluster, and then recommends items to the target customers based on their frequent, recent, and profitable FRP-sequences. In the stage of discovering FRP-sequences, the transaction patterns near the current time period and profitable items are weighted more heavily to improve profit. This study uses a public food mart database to determine the performance of the proposed approach, and compares it with traditional recommendation models. The proposed system performs better than traditional recommendation models in both recommendation accuracy and profit.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 8 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland