Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 10 gevonden artikelen
 
 
  A procedure for the detection of anomalous input-output patterns
 
 
Titel: A procedure for the detection of anomalous input-output patterns
Auteur: Matarese, Nicola
Colla, Valentina
Vannucci, Marco
Reyneri, Leonardo M.
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 5 pagina's 737-751
Jaar: 2013-09-27
Inhoud: Data preprocessing is a main step in data mining because real data can be corrupted for different causes and high performance data mining systems require high quality data. When a database is used for training a neural network, a fuzzy system or a neuro-fuzzy system, a suitable data selection and pre-processing stage can be very useful in order to obtain a reliable result. For instance, when the final aim of a system trained through a supervised learning procedure is to approximate an existing functional relationship between input and output variables, the database that is exploited in the system training phase should not contain input-output patterns for which the same input or similar input sets are associated to very different values of the output variable. In this paper a procedure is proposed for detecting non-coherent associations between input and output patterns: by comparing two distance matrices associated to the input and output patterns, the elements of the available dataset, where similar values of input variables are associated to quite different output values can be pointed out. The efficiency of the proposed algorithm when pre-processing data coming from an industrial database is presented and discussed together with a statistical assessment of the obtained results.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland