Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 9 van 10 gevonden artikelen
 
 
  Smooth support vector learning for fuzzy rule-based classification systems
 
 
Titel: Smooth support vector learning for fuzzy rule-based classification systems
Auteur: Ji, Rui
Yang, Yupu
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 4 pagina's 679-695
Jaar: 2013-07-09
Inhoud: This paper extends the previous work in the connection between fuzzy classifiers and kernel machines [2] to a general case. In [2], all membership functions for the same input variable are generated from location transformation of a reference function. A translation invariant kernel is constructed from reference functions. The kernel is a Mercer kernel if the reference functions are positive definite. A support vector learning approach for positive definite fuzzy classifiers (PDFCs) was proposed. In this paper, a smooth support vector learning algorithm for fuzzy rule-based classification systems is proposed. The smooth support vector machine (SSVM) is capable of generating nonlinear separating surfaces using arbitrary kernels. The positive definiteness requirement on reference functions is relaxed. A fuzzy classifier using arbitrary reference functions can be built from the training samples based on an SSVM. The resulting fuzzy classifier is called standard binary fuzzy classifier (SBFC). Fuzzy rules are extracted with each rule given by a training sample. The reduced kernel technique is introduced to simplify the decision function of the SBFC and to reduce the number of fuzzy rules. Finally, the performance of SBFCs with different reference functions is illustrated by experimental results. Comparisons with PDFCs are also provided.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 9 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland