Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 10 gevonden artikelen
 
 
  Feature identification for topical relevance assessment in feed search engines
 
 
Titel: Feature identification for topical relevance assessment in feed search engines
Auteur: Shin, Yongwook
Park, Jonghun
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 4 pagina's 717-733
Jaar: 2013-07-09
Inhoud: Feed has become a popular way to effectively distribute and acquire information on the web. The explosive growth of feeds demands a search engine that can help users quickly discover feeds of their interests. Retrieval effectiveness of feed search engine highly depends on a relevance assessment method that determines candidates for ranking query results. However, existing relevance assessment approaches proposed for web page retrieval may produce unsatisfactory result due to the different characteristics of feeds from traditional web pages. Compared to web pages, feed is a dynamic document since it continually generates information on some specific topics. In addition, it is a structured document that consists of several data elements such as title and description. Accordingly, the relevance assessment method for feed retrieval needs to effectively address these unique characteristics of feeds. This paper considers a problem of identifying significant features which are a feature set created from feed data elements, with the aim of improving effectiveness of feed retrieval while at the same time reducing computational cost. We conducted extensive experiments to investigate the problem using support vector machine on real-world data sets, and found the significant features that can be employed for feed search services.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland