Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 9 van 10 gevonden artikelen
 
 
  Semi-supervised text categorization: Exploiting unlabeled data using ensemble learning algorithms
 
 
Titel: Semi-supervised text categorization: Exploiting unlabeled data using ensemble learning algorithms
Auteur: Keyvanpour, Mohammad Reza
Imani, Maryam Bahojb
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 3 pagina's 367-385
Jaar: 2013-05-21
Inhoud: Text categorization is one of the fundamental tasks in text mining. Classical supervised methods need lot of labeled data to train a classifier. Since assigning labels to the large amount of data is very costly and time consuming, it is useful to use data sets without labels. So many different semi-supervised learning methods have been studied recently. Among these semi-supervised methods, self-training is one of the important learning algorithms that classifies unlabeled samples with small amount of labeled ones and adds the most confident samples to the training set. In this paper, dynamic weighting beside majority vote approach is applied to classify the unlabeled data to reliable and unreliable classes. Then, the reliable data are added to the training set and the remaining data including unreliable data are classified in iterative process. We tested this method on the extracted features of ten common Reuter-21578 classes. Experimental result indicates that proposed method improves the classification performance and it's effective.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 9 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland