Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 11 gevonden artikelen
 
 
  Expectation maximization over binary decision diagrams for probabilistic logic programs
 
 
Titel: Expectation maximization over binary decision diagrams for probabilistic logic programs
Auteur: Bellodi, Elena
Riguzzi, Fabrizio
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 2 pagina's 343-363
Jaar: 2013-05-21
Inhoud: Recently much work in Machine Learning has concentrated on using expressive representation languages that combine aspects of logic and probability. A whole field has emerged, called Statistical Relational Learning, rich of successful applications in a variety of domains. In this paper we present a Machine Learning technique targeted to Probabilistic Logic Programs, a family of formalisms where uncertainty is represented using Logic Programming tools. Among various proposals for Probabilistic Logic Programming, the one based on the distribution semantics is gaining popularity and is the basis for languages such as ICL, PRISM, ProbLog and Logic Programs with Annotated Disjunctions. This paper proposes a technique for learning parameters of these languages. Since their equivalent Bayesian networks contain hidden variables, an Expectation Maximization (EM) algorithm is adopted. In order to speed the computation up, expectations are computed directly on the Binary Decision Diagrams that are built for inference. The resulting system, called EMBLEM for "EM over Bdds for probabilistic Logic programs Efficient Mining", has been applied to a number of datasets and showed good performances both in terms of speed and memory usage. In particular its speed allows the execution of a high number of restarts, resulting in good quality of the solutions.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 11 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland