Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 11 van 11 gevonden artikelen
 
 
  Structure/attribute computation of similarities between nodes of a RDF graph with application to linked data clustering
 
 
Titel: Structure/attribute computation of similarities between nodes of a RDF graph with application to linked data clustering
Auteur: Khosravi-Farsani, Hadi
Nematbaksh, Mohammadali
Lausen, George
Verschenen in: Intelligent data analysis
Paginering: Jaargang 17 (2013) nr. 2 pagina's 179-194
Jaar: 2013-05-21
Inhoud: Similarity estimation between interconnected objects appears in many real-world applications and many domain-related measures have been proposed. This work proposes a new perspective on specifying the similarity between resources in linked data, and in general for vertices of a directed and attributed graph. More precisely, it is based on the combination of structural properties of a graph and attribute/value of its vertices. We compute similarities between any pair of nodes using an extension of Jaccard measure, which has the nice property of increasing when the number of matching attribute/value of those resources increase. Highly similar vertices are treated as one single node in the next step which is called a CGraph. Nodes of a CGraph represent highly similar resources in the first step and links between resources are generalized to links between clusters. We propose an extension of the structural algorithm, i.e. CRank to merge highly similar nodes in the next step. The suggested model is evaluated in a clustering procedure on our standard dataset where class label of each resource is estimated and compared with the ground-truth class label. Experimental results show that our model outperforms other clustering algorithms in terms of precision and recall rate.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 11 van 11 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland