Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 12 gevonden artikelen
 
 
  Fast classification for large data sets via random selection clustering and Support Vector Machines
 
 
Titel: Fast classification for large data sets via random selection clustering and Support Vector Machines
Auteur: Li, Xiaoou
Cervantes, Jair
Yu, Wen
Verschenen in: Intelligent data analysis
Paginering: Jaargang 16 (2012) nr. 6 pagina's 897-914
Jaar: 2012-11-19
Inhoud: Support Vector Machines (SVMs) are high-accuracy classifiers. However, normal SVM algorithms are unsuitable for classification of large data sets because of their training complexity. In this paper, we propose a novel SVM classification approach for large data sets. We first use the random selection to select a small group of training data for the first-stage SVM. Then a de-clustering technique is proposed to recover the training data for the second-stage SVM. This two-stage SVM classifier has distinctive advantages on dealing with huge data sets such as those in bioinformatics. The performance analysis is also given in this paper. Finally, we apply the proposed method on several benchmark problems. Experimental results demonstrate that this approach has good classification accuracy while the training is significantly faster than other SVM classifiers.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland