Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 6 gevonden artikelen
 
 
  IIvotes ensemble for imbalanced data
 
 
Titel: IIvotes ensemble for imbalanced data
Auteur: Błaszczyński, Jerzy
Deckert, Magdalena
Stefanowski, Jerzy
Wilk, Szymon
Verschenen in: Intelligent data analysis
Paginering: Jaargang 16 (2012) nr. 5 pagina's 777-801
Jaar: 2012-10-22
Inhoud: In the paper we present IIvotes – a new framework for constructing an ensemble of classifiers from imbalanced data. IIvotes incorporates the SPIDER method for selective data pre-processing into the adaptive Ivotes ensemble. Such an integration is aimed at improving balance between sensitivity and specificity (evaluated by the G-mean measure) for the minority class in comparison with single classifiers also combined with SPIDER. Using SPIDER to pre-process specific learning samples inside the ensemble improves sensitivity of derived component classifiers. At the same time the controlling mechanism of IIvotes ensures that overall accuracy (and thus specificity) is kept at a reasonable level. The new proposed IIvotes ensemble was thoroughly evaluated in a series of experiments where we tested it with symbolic (decision trees and rules) and non-symbolic (Naive Bayes) component classifiers. The results confirmed that combining SPIDER with an ensemble improved the performance (in terms of the G-mean measures) in comparison to a single classifier with SPIDER for all tested types of classifiers and two SPIDER pre-processing options (weak and strong amplification). These advantages were especially evident for decision trees and rules where differences between single and ensemble classifiers with SPIDER were more significant for both pre-processing options than for Naive Bayes. Moreover, the results demonstrated advantages of using a special abstaining classification strategy inside IIvotes rule ensembles, where component rule-based classifiers may refrain from predicting a class when in doubt. Abstaining rule ensembles performed much better with regard to G-mean than their non-abstaining variants.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland