Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 1 gevonden artikelen
 
 
  Robust mixture model-based clustering with genetic algorithm approach
 
 
Titel: Robust mixture model-based clustering with genetic algorithm approach
Auteur: Thang, Nguyen Duc
Chen, Lihui
Chan, Chee Keong
Verschenen in: Intelligent data analysis
Paginering: Jaargang 15 (2011) nr. 3 pagina's 357-373
Jaar: 2011-05-10
Inhoud: In this paper, we address the robustness issue of maximum likelihood based methods in data clustering. Probabilistic mixture model has been a well known approach to cluster analysis. However, as they rely on maximum likelihood estimation (MLE), the algorithms are often very sensitive to noise and outliers. In this work, we implement a variant of the classical mixture model-based clustering (M2C) following a proposed general framework for handling outliers. Genetic Algorithm (GA) is incorporated into the framework to produce a novel algorithm called GA-based Partial M2C (GA-PM2C). Analytical and experimental studies show that GA-PM2C can overcome the negative impact of outliers in data clustering, hence provides highly accurate and reliable clustering results. It also exhibits excellent consistency in performance and low sensitivity to initializations.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 1 gevonden artikelen
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland