Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 6 van 7 gevonden artikelen
  Mining consequence events in temporal health data
Titel: Mining consequence events in temporal health data
Auteur: Chen, Jie
Jin, Huidong
He, Hongxing
McAullay, Damien
O'Keefe, Christine M.
Sparks, Ross
Kelman, Chris
Verschenen in: Intelligent data analysis
Paginering: Jaargang 14 (2010) nr. 2 pagina's 245-261
Jaar: 2010-03-15
Inhoud: It is useful, sometimes crucial in medicine domain, to discover a temporal association or causal relationship among events. Such a mining problem is often challenging because 'consequence events' may not reliably occur after each trigger event of interest. This makes it difficult to apply existing temporal data mining techniques directly to real world problems. In this paper, we formalise the problem of mining consequence events of newly-introduced interventions. We combine the Before-After-Control-Impact (BACI) design with frequent pattern mining techniques to define an interestingness measure called consequency. We then propose a Multiple Occurrence of Target events Mining (MOTM) algorithm. MOTM is applied to the real world problem of monitoring the consequence effects of newly-marketed medicines in linked administrative health databases. The results for the case of the cholesterol lowering drug atorvastatin highlight the consequence events with lowest negative consequency values, which suggest replacement of existing therapies with the new one. The consequence events with highest consequency values are likely to be associated with adverse reactions of atorvastatin or treatments of cardiovascular (or associated) conditions. Sensitivity examination of MOTM on another drug further illustrates its effectiveness.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften

                             Details van artikel 6 van 7 gevonden artikelen
<< vorige    volgende >>
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland