Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 8 gevonden artikelen
 
 
  New probabilistic interest measures for association rules
 
 
Titel: New probabilistic interest measures for association rules
Auteur: Hahsler, Michael
Hornik, Kurt
Verschenen in: Intelligent data analysis
Paginering: Jaargang 11 (2007) nr. 5 pagina's 437-455
Jaar: 2007-10-16
Inhoud: Mining association rules is an important technique for discovering meaningful patterns in transaction databases. Many different measures of interestingness have been proposed for association rules. However, these measures fail to take the probabilistic properties of the mined data into account. We start this paper with presenting a simple probabilistic framework for transaction data which can be used to simulate transaction data when no associations are present. We use such data and a real-world database from a grocery outlet to explore the behavior of confidence and lift, two popular interest measures used for rule mining. The results show that confidence is systematically influenced by the frequency of the items in the left hand side of rules and that lift performs poorly to filter random noise in transaction data. Based on the probabilistic framework we develop two new interest measures, hyper-lift and hyper-confidence, which can be used to filter or order mined association rules. The new measures show significantly better performance than lift for applications where spurious rules are problematic.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 8 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland