Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 8 gevonden artikelen
 
 
  An evaluation of Naive Bayes variants in content-based learning for spam filtering
 
 
Titel: An evaluation of Naive Bayes variants in content-based learning for spam filtering
Auteur: Seewald, Alexander K.
Verschenen in: Intelligent data analysis
Paginering: Jaargang 11 (2007) nr. 5 pagina's 497-524
Jaar: 2007-10-16
Inhoud: We describe an in-depth analysis of spam-filtering performance of a simple Naive Bayes learner and two extended variants. A set of seven mailboxes comprising about 65,000 mails from seven different users, as well as a representative snapshot of 25,000 mails which were received over 18 weeks by a single user, were used for evaluation. Our main motivation was to test whether two extended variants of Naive Bayes learning, SA-Train and CRM114, were superior to simple Naive Bayes learning, represented by SpamBayes. Surprisingly, we found that the performance of these systems was remarkably similar and that the extended systems have significant weaknesses which are not apparent for the simpler Naive Bayes learner. The simpler Naive Bayes learner, SpamBayes, also offers the most stable performance in that it deteriorates least over time. Overall, SpamBayes should be preferred over the more complex variants.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 8 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland