Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 5 gevonden artikelen
 
 
  Boosting classifiers for drifting concepts
 
 
Titel: Boosting classifiers for drifting concepts
Auteur: Scholz, Martin
Klinkenberg, Ralf
Verschenen in: Intelligent data analysis
Paginering: Jaargang 11 (2007) nr. 1 pagina's 3-28
Jaar: 2007-03-21
Inhoud: In many real-world classification tasks, data arrives over time and the target concept to be learned from the data stream may change over time. Boosting methods are well-suited for learning from data streams, but do not address this concept drift problem. This paper proposes a boosting-like method to train a classifier ensemble from data streams that naturally adapts to concept drift. Moreover, it allows to quantify the drift in terms of its base learners. Similar as in regular boosting, examples are re-weighted to induce a diverse ensemble of base models. In order to handle drift, the proposed method continuously re-weights the ensemble members based on their performance on the most recent examples only. The proposed strategy adapts quickly to different kinds of concept drift. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. The proposed algorithm has low computational costs.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 5 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland