Digital Library
Close Browse articles from a journal
 
   next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 1 of 6 found articles
 
 
  Diverse and composite features for ECG signals processing
 
 
Title: Diverse and composite features for ECG signals processing
Author: Übeyli, Elif Derya
Appeared in: Bio-medical materials and engineering
Paging: Volume 18 (2008) nr. 2 pages 61-72
Year: 2008-04-07
Contents: The automated diagnostic systems employing diverse and composite features for electrocardiogram (ECG) signals were analyzed and their accuracies were determined. Because of the importance of making the right decision, classification procedures classifying the ECG signals with high accuracy were investigated. The classification accuracies of multilayer perceptron neural network (MLPNN), recurrent neural network (RNN), and mixture of experts (ME) trained on composite features and modified mixture of experts (MME) trained on diverse features were compared. The inputs of these automated diagnostic systems were composed of diverse or composite features (wavelet coefficients and power levels of the power spectral density estimates obtained by the eigenvector methods) and were chosen according to the network structures. The conclusions of this study demonstrated that the MME trained on diverse features achieved accuracy rates which were higher than that of the other automated diagnostic systems trained on composite features.
Publisher: IOS Press
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 1 of 6 found articles
 
   next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands