Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 12 gevonden artikelen
 
 
  Prognostic classification of early ovarian cancer based on very low dimensionality adaptive texture feature vectors from cell nuclei from monolayers and histological sections
 
 
Titel: Prognostic classification of early ovarian cancer based on very low dimensionality adaptive texture feature vectors from cell nuclei from monolayers and histological sections
Auteur: Birgitte Nielsen
Fritz Albregtsen
Wanja Kildal
HÃ¥vard E. Danielsen
Verschenen in: Analytical cellular pathology
Paginering: Jaargang 23 (2002) nr. 2 pagina's 75-88
Jaar: 2002-05-24
Inhoud: In order to study the prognostic value of quantifying the chromatin structure of cell nuclei from patients with early ovarian cancer, low dimensionality adaptive fractal and Gray Level Cooccurrence Matrix texture feature vectors were extracted from nuclei images of monolayers and histological sections. Each light microscopy nucleus image was divided into a peripheral and a central part, representing 30% and 70% of the total area of the nucleus, respectively. Textural features were then extracted from the peripheral and central parts of the nuclei images. The adaptive feature extraction was based on Class Difference Matrices and Class Distance Matrices. These matrices were useful to illustrate the difference in chromatin texture between the good and bad prognosis classes of ovarian samples. Class Difference and Distance Matrices also clearly illustrated the difference in texture between the peripheral and central parts of cell nuclei. Both when working with nuclei images from monolayers and from histological sections it seems useful to extract separate features from the peripheral and central parts of the nuclei images.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland