Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 3 of 7 found articles
 
 
  ATP-Dependent and drug-inhibited vesicle enlargement reconstituted using synthetic lipids and recombinant proteins
 
 
Title: ATP-Dependent and drug-inhibited vesicle enlargement reconstituted using synthetic lipids and recombinant proteins
Author: Morré, D. James
Kim, Chinpal
Hicks-Berger, Carrie
Appeared in: BioFactors
Paging: Volume 28 (2007) nr. 2 pages 105-117
Year: 2007-03-21
Contents: A recombinant ECTO-NOX (tNOX) and a recombinant plasma membrane associated AAA-ATPase (ATPase Associated with Different Cellular Activities) were combined in stoichometric proportions into liposomes together with albumin as a source of protein thiols. Large lamellar vesicles were formed from phosphatidylcholine, cholesterol and dicetyl phosphate in a molar ratio of 50:45:5, where the phosphatidylcholine was a 2:1 mixture of synthetic dimyristoyl and dipalmitoyl phosphatidylcholines. The lipids were dried to a film and reconstituted into vesicles by resuspension in buffer containing the recombinant proteins in equimolar ratios of 0.04 nmoles/mg lipid. In the presence of ATP, these vesicles enlarged in an ATP-dependent manner based on light-scattering measurements. Because the drug-inhibited ECTO-NOX protein, tNOX was utilized, the enlargement was inhibited by capsaicin, a quinone site tNOX inhibitor specific for tNOX. With the lipid vesicle systems, the recombinant ECTO-NOX, the recombinant AAA-ATPase, a source of protein thiols and ATP all were required. In control experiments, no ATP-dependent vesicle enlargement was observed with the AAA-ATPase or the ECTO-NOX protein alone. Also addition of ATP was without any effect when only the single proteins were incorporated into the lipid vesicles. A model has been developed whereby the plasma membrane AAA-ATPase is linked via disulfide bonds, formed and broken by the ECTO-NOX protein, to membrane structural proteins. Binding of ATP and subsequent hydrolysis and release of ADP would advance the ATPase hexamer ratchet thereby both thinning the membrane and increasing the vesicle surface.
Publisher: IOS Press
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 3 of 7 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands