Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 2 of 49 found articles
 
 
  A Control-Oriented Coverage Metric and its Evaluation for Hardware Designs
 
 
Title: A Control-Oriented Coverage Metric and its Evaluation for Hardware Designs
Author: Shireesh Verma
Kiran Ramineni
Ian G. Harris
Appeared in: Journal of computer science
Paging: Volume 5 (2009) nr. 4 pages 302-310
Year: 2009
Contents: Problem statement: Dynamic verification, the use of simulation to determine design correctness, is widely used due to its tractability for large hardware designs. A serious limitation of dynamic techniques is the difficulty in determining whether or not a test sequence is sufficient to detect all likely design errors. Coverage metrics are used to address this problem by providing a set of goalsto be achieved during the simulation process; if all coverage goals are satisfied then the test sequence is assumed to be complete. Coverage metrics hence evaluate the ability of a test sequence to detect design errors and are essential to the verification process. A key source of difficulty in determining error detection is that the control-flow path traversed in the presence of an error cannot be determined. This problem becomes particularly difficult in case of typical industrial designs involving interaction of control flow paths between concurrent processes. Error detection can only be accurately determined by exploring the set of all control-flow paths, which may be traversed as a result of an error. Also, there is no technique to identify a correlation between coverage metrics and hardware design quality. Approach: We present a coverage metric that determined the propagation of error effects along all possible erroneous control-flow paths across processes. The complexity of exploring multiple controlflow paths was greatly alleviated by heuristically pruning infeasible control-flow paths using thealgorithm that we present. We also presented a technique to evaluate coverage metric by examining its ability to ensure the detection of real design errors. We injected errors in the design to correlate their detection with the coverage computed by our metric. Results: Our coverage metric although analyzed all control-flow paths it pruned the infeasible ones and eliminated them from coverage consideration, hence reducing the complexity of generating tests meant to execute them. The metric also correlated better with detection of design errors than some well-studied metrics do. Conclusion: The proposed coverage metric provided high accuracy in measurement of coverage in designs that contain complex control-flow with concurrent processes. It is superior at detecting design error when compared with the metrics it was compared with.
Publisher: Science Publications (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 2 of 49 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands