Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 12 van 56 gevonden artikelen
 
 
  A Robust Algorithm for Subspace Clustering of High-Dimensional Data*
 
 
Titel: A Robust Algorithm for Subspace Clustering of High-Dimensional Data*
Auteur: Hongfang Zhou
Boqin Feng
Lintao Lv
Yue Hui
Verschenen in: Information technology journal
Paginering: Jaargang 6 (2007) nr. 2 pagina's 255-258
Jaar: 2007
Inhoud: Subspace clustering has been studied extensively and widely since traditional algorithms are ineffective in high-dimensional data spaces. Firstly, they were sensitive to noises, which are inevitable in high-dimensional data spaces; secondly, they were too severely dependent on some distance metrics, which cannot act as virtual indicators as in high-dimensional data spaces; thirdly, they often use a global threshold, but different groups of features behave differently in various dimensional subspaces. Accordingly, traditional clustering algorithms are not suitable in high-dimensional spaces. On the analysis of the advantages and disadvantages inherent to the traditional clustering algorithm, we propose a robust algorithm JPA (Joining-Pruning Algorithm). Our algorithm is based on an efficient two-phase architecture. The experiments show that our algorithm achieves a significant gain of runtime and quality in comparison to nowadays subspace clustering algorithms.
Uitgever: Asian Network for Scientific Information (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 12 van 56 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland