Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 47 van 50 gevonden artikelen
 
 
  The Origin and Age of Biogeochemical Trends in Deep Fracture Water of the Witwatersrand Basin, South Africa
 
 
Titel: The Origin and Age of Biogeochemical Trends in Deep Fracture Water of the Witwatersrand Basin, South Africa
Auteur: Onstott, T. C.
Lin, L. -H.
Davidson, M.
Mislowack, B.
Borcsik, M.
Hall, J.
Slater, G.
Ward, J.
Lollar, B. Sherwood
Lippmann-Pipke, J.
Boice, E.
Pratt, L. M.
Pfiffner, S.
Moser, D.
Gihring, T.
Kieft, Thomas L.
Phelps, Tommy J.
Vanheerden, E.
Litthaur, D.
Deflaun, M.
Rothmel, R.
Wanger, G.
Southam, G.
Verschenen in: Geomicrobiology journal
Paginering: Jaargang 23 (2006) nr. 6 pagina's 369-414
Jaar: 2006-09
Inhoud: Water residing within crustal fractures encountered during mining at depths greater than 500 meters in the Witwatersrand basin of South Africa represents a mixture of paleo-meteoric water and 2.0-2.3 Ga hydrothermal fluid. The hydrothermal fluid is highly saline, contains abiogenic CH4 and hydrocarbon, occasionally N2, originally formed at ∼250-300°C and during cooling isotopically exchanged O and H with minerals and accrued H2, 4He and other radiogenic gases. The paleo-meteoric water ranges in age from ∼10 Ka to > 1.5 Ma, is of low salinity, falls along the global meteoric water line (GMWL) and is CO2 and atmospheric noble gas-rich. The hydrothermal fluid, which should be completely sterile, has probably been mixing with paleo-meteoric water for at least the past ∼100 Myr, a process which inoculates previously sterile environments at depths > 2.0 to 2.5 km. Free energy flux calculations suggest that sulfate reduction is the dominant electron acceptor microbial process for the high salinity fracture water and that it is 107 times that normally required for cell maintenance in lab cultures. Flux calculations also indicate that the potential bioavailable chemical energy increases with salinity, but because the fluence of bioavailable C, N and P also increase with salinity, the environment remains energy-limited. The 4He concentrations and theoretical calculations indicate that the H2 that is sustaining the subsurface microbial communities (e.g. H2-utilizing SRB and methanogens) is produced by water radiolysis at a rate of ∼1 nM yr-1. Microbial CH4 mixes with abiogenic CH4 to produce the observed isotopic signatures and indicates that the rate of methanogenesis diminishes with depth from ∼100 at <1 kmbls, to <0.01 nM yr-1 at > 3 kmbls. Microbial Fe(III) reduction is limited due to the elevated pH. The δ13C of dissolved inorganic carbon is consistent with heterotrophy rather than autotrophy dominating the deeper, more saline environments. One potential source of the organic carbon may be microfilms present on the mineral surfaces.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 47 van 50 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland