Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 95 of 114 found articles
 
 
  Rotation numbers for quasi-periodically forced monotone circle maps
 
 
Title: Rotation numbers for quasi-periodically forced monotone circle maps
Author: Stark, J.
Feudel, U.
Glendinning, P. A.
Pikovsky, A.
Appeared in: Dynamical systems
Paging: Volume 17 (2002) nr. 1 pages 1-28
Year: 2002-03-01
Contents: Rotation numbers have played a central role in the study of (unforced) monotone circle maps. In such a case it is possible to obtain a priori bounds of the form „ - 1/n ≤(1/n)(yn - y0) ≤„ + 1/n, where (1/n)(yn - y0) is an estimate of the rotation number obtained from an orbit of length n with initial condition y0, and „ is the true rotation number. This allows rotation numbers to be computed reliably and efficiently. Although Herman has proved that quasi-periodically forced circle maps also possess a well-defined rotation number, independent of initial condition, the analogous bound does not appear to hold. In particular, two of the authors have recently given numerical evidence that there exist quasi-periodically forced circle maps for which yn - y0 - „n is not bounded. This renders the estimation of rotation numbers for quasi-periodically forced circle maps much more problematical. In this paper, a new characterization of the rotation number is derived for quasiperiodically forced circle maps based upon integrating iterates of an arbitrary smooth curve. This satisfies analogous bounds to above and permits us to develop improved numerical techniques for computing the rotation number. Additionally, the boundedness of yn - y0 - „n is considered. It is shown that if this quantity is bounded (both above and below) for one orbit, then it is bounded for all orbits. Conversely, if for any orbit yn - y0 - „n is unbounded either above or below, then there is a residual set of orbits for which yn - y0 - „n is unbounded both above and below. In proving these results a min-max characterization of the rotation number is also presented. The performance of an algorithm based on this is evaluated, and on the whole it is found to be inferior to the integral based method.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 95 of 114 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands