Multi - sample test of equal gamma distribution scale parameters in presence of unknown common shape parameter

Title:

Multi - sample test of equal gamma distribution scale parameters in presence of unknown common shape parameter

Author:

Paul, S.R. Thiagarajah, K.

Appeared in:

Communications in statistics

Paging:

Volume 21 (1992) nr. 6 pages 1633-1650

Year:

1992

Contents:

Shiue and Bain proposed an approximate F statistic for testing equality of two gamma distribution scale parameters in presence of a common and unknown shape parameter. By generalizing Shiue and Bain's statistic we develop a new statistic for testing equality of L >= 2 gamma distribution scale parameters. We derive the distribution of the new statistic ESP for L = 2 and equal sample size situation. For other situations distribution of ESP is not known and test based on the ESP statistic has to be performed by using simulated critical values. We also derive a C(α) statistic CML and develop a likelihood ratio statistic, LR, two modified likelihood ratio statistics M and MLB and a quadratic statistic Q. The distribution of each of the statistics CML, LR, M, MLB and Q is asymptotically chi-square with L - 1 degrees of freedom. We then conducted a monte-carlo simulation study to compare the perfor- mance of the statistics ESP, LR, M, MLB, CML and Q in terms of size and power. The statistics LR, M, MLB and Q are in general liberal and do not show power advantage over other statistics. The statistic CML, based on its asymptotic chi-square distribution, in general, holds nominal level well. It is most powerful or nearly most powerful in most situations and is simple to use. Hence, we recommend the statistic CML for use in general. For better power the statistic ESP, based on its empirical distribution, is recommended for the special situation for which there is evidence in the data that λ1 < … < λL and n1 < … < nL, where λ1 …, λL are the scale parameters and n1,…, nL are the sample sizes.