Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 13 van 13 gevonden artikelen
 
 
  The subgroup generated by the involutions in a compact ring
 
 
Titel: The subgroup generated by the involutions in a compact ring
Auteur: Cohen, Jo-Ann
Koh, Kwangil
Verschenen in: Communications in algebra
Paginering: Jaargang 19 (1991) nr. 11 pagina's 2923-2954
Jaar: 1991
Inhoud: If A is a compact ring with identity and G is the group of units in A, an element g in G is an involution of A if g2 = 1. Let ▵ denote the set of involutions in A and let W be the subgroup of G generated by ▵. Given g ∈ W, the lengthl (g), of g is the smallest positive integer m such that there exist [image omitted] . It is shown that W is compact if and only if there exists a positive integer m such that l(g),≤ m for all g in W. Moreover if A is a compact semisimple ring or if A is a compact ring such that 2 is a unit in A and the Jacobson radical J of A contains no nonzero algebraic nilpotent element, then l(g),≤ 4 for all g in W. Furthermore in the latter casel(g) = 1 for all g in W if and only if A/J is isomorphic to a product of finite fields, each having odd characteristic. In general ▵ is either finite or uncountable. If W is finitely generated, ten W is finite. It is also shown that in n is an odd integer greater than 3, then W is not isomorphic to the dihedral group Dn, However, for each prime p greater than 3, there exists a finite ring A such that W is isomorphic to D2p Finally those compact rings for which W = G are considered. In particular it is shown that, up to isomorphism, the ring of integers module 3 is the unique local compact ring for which W = G and for which 2 is a unit.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 13 van 13 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland