Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 5 gevonden artikelen
 
 
  K-Theory of Free Rings
 
 
Titel: K-Theory of Free Rings
Auteur: Gersten, S. M.
Verschenen in: Communications in algebra
Paginering: Jaargang 1 (1974) nr. 1 pagina's 39-64
Jaar: 1974
Inhoud: The object of this article is to establish the following result (Corollary 3.9 below): If R is a regular right noetherian ring and R{X} is the free associative algebra on the set X, then Kn(R) = Kn(R{X}), where Kn refers to the Quillen K-theory. The result can be stated in the equivalent form that Hn(G1(R),Z) = Hn(G1(R{X}),Z). From this result it follows that if F is a free ring without unit, then Kn(F) = 0, whence free rings are acyclic models for Quillen K-theory (3.11 below). This result in turn enables us to complete Anderson's work [1] in identifying the Quillen K-theory [11] and the K-theory proposed by Gersten [7] and Swan [18] for all rings. We also establish that the natural transformation Kn(R) → Knk-v(R) between the Quillen theory and the K-theory of Karoubi and Villamayor is an isomorphism if R is a supercoherent (Definition 1.2) and regular (Definition 1.3) ring. From this result we can gain some information about the K-theory of group rings of free products of groups (Theorem 5.1).
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 5 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland